Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling.
نویسندگان
چکیده
The enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter (EchA) was improved using error-prone PCR and DNA shuffling. An agar plate assay was used to screen the mutant libraries for activity. Screening for improved enantioselectivity was subsequently done by spectrophotometric progress curve analysis of the conversion of para-nitrophenyl glycidyl ether (pNPGE). Kinetic resolutions showed that eight mutants were obtained with up to 13-fold improved enantioselectivity toward pNPGE and at least three other epoxides. The large enhancements in enantioselectivity toward epichlorohydrin and 1,2-epoxyhexane indicated that pNPGE acts as an epoxyalkane mimic. Active site mutations were found in all shuffled mutants, which can be explained by an interaction of the affected amino acid with the epoxide oxygen or the hydrophobic moiety of the substrate. Several mutations in the shuffled mutants had additive effects.
منابع مشابه
Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol.
DNA shuffling and saturation mutagenesis of positions F108, L190, I219, D235, and C248 were used to generate variants of the epoxide hydrolase of Agrobacterium radiobacter AD1 (EchA) with enhanced enantioselectivity and activity for styrene oxide and enhanced activity for 1,2-epoxyhexane and epoxypropane. EchA variant I219F has more than fivefold-enhanced enantioselectivity toward racemic styre...
متن کاملModeling DNA mutation and recombination for directed evolution experiments.
Directed evolution experiments rely on the cyclical application of mutagenesis, screening and amplification in a test tube. They have led to the creation of novel proteins for a wide range of applications. However, directed evolution currently requires an uncertain, typically large, number of labor intensive and expensive experimental cycles before proteins with improved function are identified...
متن کاملAddressing the numbers problem in directed evolution.
Our previous contribution to increasing the efficiency of directed evolution is iterative saturation mutagenesis (ISM) as a systematic means of generating focused libraries for the control of substrate acceptance, enantioselectivity, or thermostability of enzymes. We have now introduced a crucial element to knowledge-guided targeted mutagenesis in general that helps to solve the numbers problem...
متن کاملControlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications.
A fundamentally new approach to asymmetric catalysis in organic chemistry is described based on the in vitro evolution of enantioselective enzymes. It comprises the appropriate combination of gene mutagenesis and expression coupled with an efficient high-throughput screening system for evaluating enantioselectivity (enantiomeric excess assay). Several such cycles lead to a "Darwinistic" process...
متن کاملEnhancement of Soluble Expression and Biochemical Characterization of Two Epoxide Hydrolases from Bacillus
Background: Enantiopure epoxides are important intermediates in the synthesis of high-value chiral chemicals. Epoxide hydrolases have been exploited in biocatalysis for kinetic resolution of racemic epoxides to produce enantiopure epoxides and vicinal diols. It is necessary to obtain sufficient stable epoxide hydrolases with high enantioselectivity to meet the requirements of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 11 7 شماره
صفحات -
تاریخ انتشار 2004